General Midpoint Subdivision
نویسندگان
چکیده
In this paper, we introduce two generalizations of midpoint subdivision and analyze the smoothness of the resulting subdivision surfaces at regular and extraordinary points. The smoothing operators used in midpoint and mid-edge subdivision connect the midpoints of adjacent faces or of adjacent edges, respectively. An arbitrary combination of these two operators and the refinement operator that splits each face with m vertices into m quadrilateral subfaces forms a general midpoint subdivision operator. We analyze the smoothness of the resulting subdivision surfaces by estimating the norm of a special second order difference scheme and by using established methods for analyzing midpoint subdivision. The surfaces are smooth at their regular points and they are also smooth at extraordinary points for a certain subclass of general midpoint subdivision schemes. Generalizing the smoothing rules of non general midpoint subdivision schemes around extraordinary and regular vertices or faces results in a class of subdivision schemes, which includes the Catmull-Clark algorithm with restricted parameters. We call these subdivision schemes generalized Catmull-Clark schemes and we analyze their smoothness properties.
منابع مشابه
Analyzing midpoint subdivision
Midpoint subdivision generalizes the Lane-Riesenfeld algorithm for uniform tensor product splines and can also be applied to non regular meshes. For example, midpoint subdivision of degree 2 is a specific Doo-Sabin algorithm and midpoint subdivision of degree 3 is a specific Catmull-Clark algorithm. In 2001, Zorin and Schröder were able to prove C1-continuity for midpoint subdivision surfaces a...
متن کاملGeneralized Catmull-Clark Subdivision
The Catmull-Clark subdivision algorithm consists of an operator that can be decomposed into a refinement operator and a successively executed smoothing operator, where the refinement operator splits each face with m vertices into m quadrilateral subfaces and the smoothing operator replaces each internal vertex with an affine combination of its neighboring vertices and itself. Over regular meshe...
متن کاملThe Relationship Between RATS-splines and the Catmull and Clark B-splines
This paper presents the relationship between the Recursive Arbitrary Topology Splines (RATS) method, derived by the authors, and the Catmull and Clark recursive B-Spline method. Both methods are capable of defining surfaces of any arbitrary topology of control points. They "fill-in" n-sided regions with foursided patches. The Catmull & Clark method is derived from the midpoint subdivision of B-...
متن کاملSubdivision by WAVES – Weighted AVEraging Schemes
The Catmull-Clark subdivision algorithm consists of an operator that can be decomposed into a refinement and a smoothing operator, where the refinement operator splits each face with m vertices into m quadrilateral subfaces and the smoothing operator replaces each internal vertex with an affine combination of its neighboring vertices and itself. In this paper, we generalize the Catmull-Clark sc...
متن کاملBinary Subdivision Schemes for Functionsover Irregular Knot
For a wide class of stationary subdivision methods, we derive necessary and suucient conditions for these schemes to produce C k continuous limit curves. These stationary schemes include those arising from midpoint subdivision of irregularly-spaced knot sequences. We also describe a matrix method for computing various derivative schemes associated with such stationary schemes. x1. Introduction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1208.3794 شماره
صفحات -
تاریخ انتشار 2012